
Limits and Continuity

1 Intro

− In functions of 1 variable, a limit as x→ a exists only if the left-sided and right-sided
limits are equal.

− In functions of 2 variables, a limit as (x, y) → (a, b) exists only if limits along all
smooth space curves (x, y(x)) approaching (a, b) are equal.

− There are infinitely many such curves, so we cannot simply show both one-sided limits
are equal to find the limit as we could in functions of 1 variable.

− To show a limit does not exist, we can find 2 space curves along which the limits are
not equal.

− To find the values of limits that do exist, we must use prior knowledge of a function’s
continuity, the δ-ε definition of the limit, or the Squeeze Theorem.

− All of these ideas scale up to functions of n variables.

2 Limits and Continuity

1 (Definition of a limit) Let f be a function of two variables whose domain D in-
cludes points arbitrarily close to (a, b). Then we say the limit of f(x, y) as (x, y)
approaches (a, b) is L and we write

lim
(x,y)→(a,b)

f(x, y) = L

if for every number ε > 0, there exists a number δε > 0 such that for all (x, y) in the
domain where 0 <

√
(x− a)2 + (y − b)2 < δε, we have |f(x, y)− L| < ε.

This says, intuitively, there exists a circle (of radius δε) centered at (a, b) wherein f(x, y)
is within ε units of L no matter how small we make ε (except possibly at the point (a, b)
itself).

Typically, δ depends on ε (and possibly x and y), which is emphasized with the δε notation.

A function f(x, y) is continuous at the point (a, b) if lim
(x,y)→(0,0)

f(x, y) = f(a, b). Some

common functions are continuous:

− Polynomials are continuous everywhere
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− Rational functions (a polynomial divided by a polynomial) are continuous on their
domains.

• 1
x+y is continuous for all (x, y) such that y 6= −x (i.e. where the denominator is

not 0).

− sin(x), cos(x), ex are continuous everywhere, ln(x) is continuous for x > 0

− If f and g are continuous at (a, b), so are f ± g, f · g, f ◦ g (composition of functions)

3 The Squeeze Theorem

2 (The Squeeze Theorem) If f(x, y) ≤ g(x, y) ≤ h(x, y) when (x, y) is near (a, b)
(except possibly at (x, y)) and

lim
(x,y)→(a,b)

f(x, y) = lim
(x,y)→(a,b)

h(x, y) = L

then lim
(x,y)→(a,b)

g(x, y) = L

We will find it useful to use absolute values |f(x, y)| and |h(x, y)| bounding the absolute
value of our given function |g(x, y)|.

Commonly, if we think the limit is L, we can simply use f(x, y) = L and find an upper
bounding function |h(x, y)| with the same limit.

4 Problems

Example 1 Find lim
(x,y)→(0,0)

xy
x2+y2 if it exists or show that it does not exist.

Let’s try finding the limit along an arbitrary line y = mx (m 6= 0) through (0, 0),

lim
(x,mx)→(0,0)

mx2

x2 +m2x2
= lim

(x,mx)→(0,0)

m

1 +m2
=

m

1 +m2

y = x and y = 2x are valid forms of the y = mx we plugged in, but using m = 1 and
m = 2 produce different values for limits along different space curves, so the limit does
not exist.

(By choosing an arbitrary line y = mx, we only had to take one limit as opposed to trying
once with y = x and another time with y = 2x. Since finding the limit along y = mx is
typically no more difficult than using y = x, this is an effective practice.)

Example 2 Find lim
(x,y)→(2,1)

2xy + 5x4 − x2y6 if it exists or show that it does not exist.
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Since this function is a polynomial, it is continuous everywhere, so we can just plug in
x = 2, y = 1,

lim
(x,y)→(2,1)

2xy + 5x4 − x2y6 = 2(2)(1) + 5(2)4 − (2)2(1)6 = 80

Example 3 Find lim
(x,y,z)→(3,0,1)

2e−xy sin
(
πz
2

)
if it exists or show that it does not exist.

We know that f(x) = 2ex and g(x) = −xy are continuous, so the composition 2e−xy is con-
tinuous. Similarly, sin(x) and πx

2 are continuous, so the composition sin
(
πz
2

)
is continuous.

The product of continuous functions is continuous, so the whole function 2e−xy sin
(
πz
2

)
is

continuous, then

lim
(x,y,z)→(3,0,1)

2e−xy sin
(πz

2

)
= 2e3·0 sin

(π
2

)
= 2 · 1 · 1 = 2

Example 4 (Squeeze Theorem 1) Find lim
(x,y)→(0,0)

y2(1−cos(2x))
x4+y2 if it exists or show that

it does not exist.

It appears we can cancel the terms in the denominator by finding the limit along y = mx2

lim
(x,mx2)→(0,0)

m2x4(1− cos(2x))

x4 +m2x4
= lim

(x,mx2)→(0,0)

m2(1− cos(2x))

1 +m2

=
m2(1− 1)

1 +m2
= 0

Solving along a line y = mx appears to maybe be useful as well:

lim
(x,x)→(0,0)

m2x2(1− cos(2x))

x2(x2 +m2)
= lim

(x,x)→(0,0)

m2(1− cos(2x))

x2 +m2

=
m2(1− 1)

0 +m2
= 0

Since all of these produce the same value, it seems maybe the limit actually exists as 0, but
we need to prove it, so we will attempt to use the Squeeze Theorem. Since the limit is 0,
we can use simply the constant function 0 as our lower bound,

0 ≤
∣∣∣∣y2(1− cos(2x))

x4 + y2

∣∣∣∣ ≤ |h(x, y)|

So we need a function h whose absolute value is larger than the absolute value of our
function, but also has a limit of 0 as (x, y)→ (0, 0). We notice∣∣∣∣y2(1− cos(2x))

x4 + y2

∣∣∣∣ =
y2

x4 + y2
|1− cos(2x)| ≤ |1− cos(2x)|

Since 0 ≤ y2

x4+y2 ≤ 1, and lim
(x,y)→(0,0)

1− cos(2x) = 0, then lim
(x,y)→(0,0)

x4(1−cos(2x))
x4+y2 = 0 by the

Squeeze Theorem.

Example 5 (δ-ε and Squeeze Theorem 2) Find lim
(x,y)→(0,0)

2x2y
x2+y2 if it exists or show that

it does not exist.

3



Along a line y = mx,

lim
(x,mx)→(0,0)

2mx3

x2 +m2x2
= lim

(x,mx)→(0,0)

2mx

1 +m2
= 0

So we know the limit is either 0 or does not exist. No other simple curves seem to lead to
nonzero limits, so let’s attempt prove the limit is 0.

Method 1: Definition of a Limit

To show that 0 satisfies the definition of the limit, we need to show that for a given, arbitrary

ε > 0, we can find a δε > 0 such that if
√
x2 + y2 < δε, then

∣∣∣ 2x2y
x2+y2 − 0

∣∣∣ < ε.

Fix the value of ε and then we will try to reduce the latter absolute value. Since x2 ≤ x2+y2

and each is positive,∣∣∣∣ 2x2y

x2 + y2
− 0

∣∣∣∣ = 2|y| x2

x2 + y2
≤ 2|y| ≤ 2

√
x2 + y2 < 2δε

Choose δε = ε
2 . Then if we let

√
x2 + y2 < δε and use the above, for the given ε,∣∣∣∣ 2x2y

x2 + y2
− 0

∣∣∣∣ < 2δ(x, y, ε) = 2
ε

2
= ε

Thus, the limit is 0 by the definition of a limit.

Method 2: Squeeze Theorem As shown above,

0 ≤
∣∣∣∣ 2x2y

x2 + y2

∣∣∣∣ =
2x2

x2 + y2
|y| ≤ 2|y|

The limit of 2|y| as (x, y)→ (0, 0) is 0, so lim
(x,y)→(0,0)

2x2y
x2+y2 = 0 by the Squeeze Tpheorem.

Example 6 (Squeeze Theorem 3) Find lim
(x,y)→(0,0)

xy√
x2+y2

if it exists or show that it does

not exist.

Finding the limit along the line y = mx,

lim
(x,mx)→(0,0)

mx2√
x2 +m2x2

= lim
(x,mx)→(0,0)

mx2

x
√

1 +m2

= lim
(x,mx)→(0,0)

mx√
1 +m2

= 0

Finding the limit along a parabola y = mx2,

lim
(x,mx2)→(0,0)

mx3√
x2 +m2x4

= lim
(x,mx2)→(0,0)

mx3√
x2(1 +m2x2)

= lim
(x,mx2)→(0,0)

mx3

x
√

1 +m2x2

= lim
(x,mx2)→(0,0)

mx2√
1 +m2x2

=
0√

1 + 0
= 0
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We can see that similarly, x = my2 would yield 0 as well, so it seems perhaps the limit
exists, so let’s try the Squeeze Theorem:

0 ≤

∣∣∣∣∣ xy√
x2 + y2

∣∣∣∣∣ = |x| |y|√
x2 + y2

= |x|
√
y2√

x2 + y2
≤ |x|

Since the limit of |x| for (x, y)→ (0, 0) is 0, lim
(x,y)→(0,0)

xy√
x2+y2

= 0 by the Squeeze Theorem.

Example 7 Determine the set of points at which the function is continuous.

f(x) =

{
x2y3

2x2+y2 if (x, y) 6= (0, 0)

1 if (x, y) = (0, 0)

First, notice that f is a rational function with a domain consisting of all points except (0, 0),
so it must be continuous on its domain, but what about at the point (0, 0) itself?

It will be continuous at (0, 0) only if lim
(x,y)→(0,0)

f(x, y) = f(0, 0) = 1, so we need to find the

limit or show that it does not exist. Notice that along the line y = x, we find

lim
(x,x)→(0,0)

x5

3x2
= lim

(x,x)→(0,0)

x3

3
=

0

3
= 0

Therefore, the limit as (x, y)→ (0, 0) is 0 or does not exist – in either case, the limit is not
f(0, 0), so continuity fails. In set notation, f is continuous on

{
(x, y) ∈ R2 | (x, y) 6= (0, 0)

}
.

5 General Strategy for Finding lim
(x,y)→(a,b)

f(x, y)

1. Do we already know f is continuous near (a, b)? (Is f constructed from sin(x), cos(x),
ex, polynomial, etc, defined near (a, b)? If so, we immediately have a limit f(a, b).

2. If not, find the limit along convenient smooth space curves, such as straight lines along
the lines y = b, x = a, or better yet, an arbitrary line through (a, b) with slope m:

y − b = m(x− a)

y = m(x− a) + b

(Convenient space curves often allow you to cancel troublesome terms from the
denominator.)

3. Note that many of the limits you will see will be as (x, y)→ (0, 0), which makes these
formulas simpler (for example, y = mx instead of y = m(x− a) + b).

4. If the limit along one of these curves does not exist or two such limits do not match
(for example, if the value changes for different values of m), the limit of interest will
not exist.

5. Otherwise, try some other curves, such as y = (x− a)n + b or x = (y − b)n + a.

6. If these simple curves produce matching limits, we may suspect the limit exists, and
we should undertake another strategy to prove the limit is what we think it is, such
as a δ-ε proof or the Squeeze Theorem.
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