
1 Highlights (§15.4)

− Disclaimer: This is NOT a complete list of what you need to understand.
It is very necessary to do practice problems.

− Cartesian to polar coordinates: r2 = x2 + y2, x = r cos θ, y = r sin θ.

− If f is continuous on D = {(r, θ) |α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ)}, then∫∫
D

f(x, y) dA =

∫ β

α

∫ h2(θ)

h1(θ)

f(r cos θ, r sin θ)r dr dθ

− It is very helpful in this section to recall some trigonometric identities.

− Draw the domains and/or figures if at all possible! Useful symmetries can
make some problems much shorter and easier.

2 Problems

Example 1 (#13): Evaluate the integral by changing to polar coordinates∫∫
D

arctan
(
y
x

)
dA where D = {(x, y) | 1 ≤ x2 + y2 ≤ 4, 0 ≤ y ≤ x}.

Since 1 ≤ x2 + y2 ≤ 4, we can plug in r2 = x2 + y2 to find 1 ≤ r ≤ 2.

Next, we need to find bounds for θ. Since x ≥ y ≥ 0, we are be limited to the
first quadrant where y ≤ x, so we must have the region below y = x in the first
quadrant, which makes a 45 deg, or π

4 , so 0 ≤ θ ≤ π
4
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We can now set up the integral:∫∫
D

arctan
(y
x

)
dA =

∫ π
4

0

∫ 2

1

r arctan

(
r sin θ

r cos θ

)
dr dθ

=

∫ π
4

0

∫ 2

1

r arctan (tan θ) dr dθ =

∫ π
4

0

∫ 2

1

rθ dr dθ

=

∫ π
4

0

θ dθ

∫ 2

1

r dr =

[
θ2

2

]π
4

0

[
r2

2

]2
1

=
π2

32
· 3

2
=

3π2

64

Note that splitting the integral in the last line was only possible because the lim-
its of integration were constants and we could write the integrand as a product
of functions of r and θ exclusively.

Also note arctan(tan θ) = θ is not true everywhere, but it is true on 0 ≤ θ ≤ π
2 .

Example 2 Use a double integral to find the area of the region enclosed by
both circles (x− 1)2 + y2 = 1 and x2 + (y − 1)2 = 1.

We have been using double integrals for volume, but if we set the height of the
figure to 1 unit within the region, we will get the area.

We notice the region will lie in the first quadrant between angles 0 and π
2 , but

the part from 0 to π
4 will be exactly half the area, so we can integrate θ in this

region and multiply by 2.

Notice the radius in this region will go from the origin to the upper circle
x2 + (y − 1)2 = 1, so we can solve for r (we used the wrong circle in lab! This
would have been okay if we adjusted the bounds on theta to π/4 ≤ θ ≤ π/2):

x2 + (y − 1)2 = 1

x2 + y2 − 2y + 1 = 1

r2 − 2r sin θ = 0

r(r − 2 sin θ) = 0
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Then we have 0 ≤ r ≤ 2 sin θ where 0 ≤ θ ≤ π
4 :

Then the area is

A =

∫∫
D

1 · dA = 2

∫ π
4

0

∫ sin θ

0

r dr dθ = 2

∫ π
4

0

[
r2

2

]sin θ
0

dθ

=

∫ π
4

0

sin2 θ dθ =
1

2

∫ π
4

0

(1− cos 2θ) dθ

=
1

2

[
θ +

sin 2θ

2

]π
4

0

=
1

2

[
π

4
+

1

2

]
=

1

8
(π + 2)

where we used the half-angle formula in the next to last line.

Example 3 (The Napkin Ring Problem, #20): A cylindrical drill with
radius r1 is used to bore a hole through the center of a sphere with radius r2.
Find the volume of the ring-shaped solid that remains and write it in terms of
the height of the hole.

We can center the sphere at (0, 0, 0) if we like and it makes sense to find the
volume above the xy-plane and multiply by 2, assuming the cylindrical hole is
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perpendicular to the xy-plane, so we need the distance between a point (r, θ)
on the xy-plane and the half sphere directly above.

To find the height, we draw a right triangle between (0, 0), (r, θ), and the sphere
directly above (r, θ), then we know the lower leg is of length r and the hypotenuse
is r2, then the height is

√
r22 − r2 by the Pythagorean Theorem.

Clearly, our region will be where r1 ≤ r ≤ r2 and 0 ≤ θ ≤ 2π, then we have

V = 2

∫ 2π

0

∫ r2

r1

r
√
r22 − r2 dr dθ = 2

∫ 2π

0

−1

2

∫ 0

r22−r21

√
u du dθ

=

∫ 2π

0

∫ r22−r
2
1

0

√
u du dθ =

∫ 2π

0

[
2

3
u

3
2

]r22−r21
0

dθ

=
2

3

(
r22 − r21

) 3
2

∫ 2π

0

dθ =
4π

3

(
r22 − r21

) 3
2

This gives us the volume, but if we wish to write it in terms of the height of the
hole, we can find the height at r = r1, which is

√
r22 − r21 for the top half, and

so h = 2
√
r22 − r21, then the volume can be written

V =
4π

3

(√
r22 − r21

)3

=
π

3

1

2
h3 =

πh3
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Example 4 (#35): A swimming pool is circular with 40-ft diameter. The
depth is constant along east-west lines and increases linearly from 2 ft at the
sound end to 7 ft at the north end. Find the volume of water in the pool.
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If we center the pool at (0,0,0) with the x-axis representing the east-west direc-
tion, then we know the domain is where x2+y2 ≤ 400, or {(r, θ) | 0 ≤ r ≤ 20, 0 ≤ θ ≤ 2π}
in polar coordinates.

The depth of the pool will be independent of x since the depth is constant along
east-west lines, then the depth function f(x, y) will start at f(0,−20) = 2 in
the shallow end and f(0, 20) = 7 in the deep end, with a line connecting the
two.

Thus, for a line f(x, y) = my+ b, we can find m(20− (−20)) = 7− 2, or m = 1
8 ,

and b = f(0, 0) = 9
2 , so we have f(x, y) = 1

8y + 9
2 . Evaluating the volume via

polar coordinates:

V =

∫∫
D

f(x, y)dA =

∫ 2π

0

∫ 20

0

1

8
r2 sin θ +

9

2
r dr dθ

=

∫ 2π

0

sin θ

8

8000

3
+

9

2

400

2
dθ =

∫ 2π

0

1000

3
sin θ + 900 dθ

=
1000

3
[− cos θ]

2π
0 + [900θ]

2
0 0 = 1800π ft3

Example 5 (#37): Find the average value of the function f(x, y) = 1√
x2+y2

on the annulus a2 ≤ x2 + y2 ≤ b2 (i.e. between circles of radii a and b).

To find the average value, we first need the area of the region in the xy-plane,
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i.e. the area of the outer circle minus the area of the inner circle: π(b2 − a2).

Our region in polar coordinates will be D = {(r, θ) | a ≤ r ≤ b, 0 ≤ θ ≤ 2π}, and
our function in polar coordinates is f(r, θ) = 1

r , then we have

favg =
1

A(D)

∫ 2π

0

∫ b

a

1

r
r dr dθ =

1

π(b2 − a2)

∫ 2π

0

∫ b

a

dr dθ

=
b− a

π(b2 − a2)

∫ 2π

0

dθ =
2π(b− a)

π(b2 − a2)
=

2(b− a)

(b− a)(b+ a)
=

2

a+ b
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