
§12.1 3D Coordinates

Example 1 What does the equation (x− 3)2 + (y + 2)2 + z2 = 4 represent in
3D space? What about 1 ≤ (x− 3)2 + (y + 2)2 + z2 ≤ 4?

Solution: The first formula is for a sphere of radius
√

4 = 2, centered at
(3,−2, 0) (not filled in).

The second is all space between the sphere centered at the same point with
radius 1 and the sphere centered at the same point with radius 2.

§12.2-4 Vectors and Products

Example 1 What is the angle between vectors i + 3j− 4k and −i− j + 4k?

Solution:

cos(θ) =
a · b
|a||b|

=
(1 · (−1)) + (3 · (−1)) + ((−4) · 4)√

12 + 32 + (−4)2
√

(−1)2 + (−1)2 + 42

=
−20√
26
√

18

θ = arccos

(
−20√
26
√

18

)
≈ 2.75 radians ≈ 157.6◦

Example 2 Show that the vector orthab = b−projab is orthogonal to a. (It
is called the orthogonal projection of b.)

Solution:

(orthab) · a = (b− projab) · a by definition of orth. projection

= b · a−
(
a · b
|a|2

a

)
· a by def’n of proj and distributive property

= b · a−
(
a · b
|a|2

)
a · a property 4 of the dot product

= b · a−

(
a · b

�
�|a|2

)
�
�|a|2 property 1 of the dot product

= b · a− b · a property 2 of the dot product

= 0
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The dot product of a and orthab is zero, so they are orthogonal.

Example 3 Use a scalar projection to show that the distance from a point
P1(x1, x2) to the line ax+ by + c = 0 is

|ax1 + bx2 + c|√
a2 + b2

and find the distance from the point (−2, 3) to the line 3x− 4y + 5 = 0.

Solution: First, notice that the vector n = 〈a, b〉 is perpendicular to the line,
which we will show. Let Q1(a1, b1) and Q2(a2, b2) be points on the line, then
we have

n ·
−−−→
Q1Q2 = a(a2 − a1) + b(b2 − b1)

= (aa1 + bb2)− (aa2 + bb2)

= −c− (−c) = 0 Since Q1 and Q2 are on the line

Since
−−−→
Q1Q2 is in the direction of the line and this dot product is 0, we now see

that n is perpendicular to the line.

Now we can see that the vector
−−−→
P1Q2 will connect our point P1 to a point on

the line, Q2, but it is not necessarily the shortest vector between the two. The
shortest vector will be in the direction of n, since it is perpendicular to the line.

In order to find the length of the shortest vector connecting P1 to the line will

be |compn
−−−→
P1Q2|:

|compn

−−−→
P1Q2| =

|n ·
−−−→
P1Q2|
|n|

=
|a(a2 − x1) + b(b2 − x2)|√

a2 + b2

=
|(aa2 + bb2)− (ax1 + bx2)|√

a2 + b2

=
| − c− (ax1 + bx2)|√

a2 + b2
Since Q2 is on the line

=
|ax1 + bx2 + c|√

a2 + b2
Multiplying the inside by −1 does

not change the absolute value

This is the desired result. Applying the formula to allows us to find the distance
from (−2, 3) to the line 3x− 4y + 5 = 0:
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distance =
|3(−2)− 4(3) + 5)√

32 + 42

=
| − 13|

5
=

13

5

Example 4 Find a unit vector that is orthogonal to both 〈0, 1, 3〉 and 〈−1, 0, 3〉

Solution: We know the cross product of two vectors produces a vector orthog-
onal to both vectors, so we can find

v = v1 × v2

=

∣∣∣∣∣∣
i j k
0 1 3
−1 0 3

∣∣∣∣∣∣
= i(3− 0)− j(0 + 3) + k(0 + 1)

= 〈3,−3, 1〉

So we found a vector orthogonal to both of the given vectors, but we need to
find a unit vector. A vector of different magnitude in the same direction as
v will also be orthogonal, so we can find the unit vector in this direction by
dividing v by its magnitude:

u =
v

|v|

=
〈3,−3, 1〉√

32 + (−3)2 + 12

=

〈
3√
19
,− 3√

19
,

1√
19

〉

§12.5 Equations of Lines and Planes

Example 1 Find parametric equations for the line through the point (0, 1, 2)
that is parallel to the plane x + y + z = 2 and perpendicular to the line x =
1 + t, y = 1− t, z = 2t.

Solution: We know that the line will be perpendicular to both the plane’s
normal vector, 〈1, 1, 1〉, and the direction vector of the given line, 〈1,−1, 2〉.
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To find a vector perpendicular to both of these, we find the cross product:

v = v1 × v2

=

∣∣∣∣∣∣
i j k
1 1 1
1 −1 2

∣∣∣∣∣∣
= i(2 + 1)− j(2− 1) + k(−1− 1)

= 〈3,−1,−2〉

Since this vector v is perpendicular to both of these, it will be the direction
vector of our line. We also know the point (0, 1, 2) is on our line, so we can find
the parametric equations of the line as follows:

〈x(t), y(t), z(t)〉 = 〈3t, 1− t, 2− 2t〉

§12.6 Cylinders and Quadric Surfaces

Example 1 Reduce the equation x2 − y2 + z2 − 4x− 2y − 2z + 4 = 0 to one of
its standard forms and classify the surface.

Solution: First, we want to complete the square for each x, y, z by adding and
subtracting convenient values as follows:

x2 − y2 + z2 − 4x− 2y − 2z + 4 = 0

(x2 − 4x)− (y2 + 2y) + (z2 − 2z) + 4 = 0

(x2 − 4x+ 4)− 4− (y2 + 2y + 1) + 1 + (z2 − 2z + 1)− 1 + 4 = 0

(x2 − 4x+ 4)− (y2 + 2y + 1) + (z2 − 2z + 1) = 0

(x− 2)2 − (y + 1)2 + (z − 1)2 = 0

(x− 2)2 + (z − 1)2 = (y + 1)2

Using the chart of types of surfaces from §12.6, we see this as a horizontal cone
with center (2,−1, 1) and axis the horizontal line 〈2, t, 1〉

Example 2 Reduce the equation 4x2 + y2 + 4z2 − 4y − 24z + 36 = 0 to one of
its standard forms and classify the surface.

Solution: Again, we want to complete the squares for y, z, but not x because
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we don’t have a term in the form cx:

4x2 + y2 + 4z2 − 4y − 24z + 36 = 0

4x2 + (y2 − 4y) + (4z2 − 24z) + 36 = 0

4x2 + (y2 − 4y + 4)− 4 + 4(z2 − 6) + 36 = 0

4x2 + (y − 2)2 + 4(z2 − 6 + 9)− 36 + 32 = 0

4x2 + (y − 2)2 + 4(z − 3)2 = 4

x2 +
(y − 2)2

4
+ (z − 3)2 = 1

This formula is now in the form of an ellipsoid with center (0, 2, 3), which will
be elongated in the direction of the y axis.

§13.1 Vector Functions and Space Curves

Example 1 Let r(t) = 〈t sin(t), t cos(t), t+ 1〉. Find lim
t→0

r(t) and lim
t→6π

r(t) for

0 ≤ t ≤ 6π.

Solution: In order to apply a limit, we just apply it separately to each compo-
nent of the space curve r(t):

lim
t→0

r(t) = 〈0, 0, 1〉

lim
t→6π

r(t) = 〈0, 6π, 1 + 6π〉

Since x(t) = t sin(t), y(t) = t cos(t), x and y spiral outward, getting larger and
larger as t increases. z(t) = t + 1, so the plot moves upward steadily as t
increases, beginning at z = 1.

§13.2 Derivatives and Integrals of Vector Func-
tions

Example 1 Evaluate the integral
∫
〈sin t, cos t, t〉dt

Solution: We can apply the integral to each component separately, so we have∫
〈sin t, cos t, t〉dt =

〈∫
sin tdt,

∫
cos tdt,

∫
tdt

〉
=

〈
− cos t, sin t,

t2

2

〉
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§13.3 Arc Length and Curvature

Example 1: Find the vectors T(t), N(t), B(t), and the curvature κ(t) of the
space curve r(t) = 〈t2, 23 t

3, t〉 at point
(
1, 23 , 1

)
. What are these values called?

Find the arc length from t = 0 to t = 1. What are these values geometrically?

Solution: Firstly, what is the t value such that r(t) =
(
1, 23 , 1

)
? We can see

that t = 1 is one such t value.

T(1) is the unit tangent vector to r(t) at t = 1, which we find as follows:

T(t) =
r′(t)

|r′(t)|
=

〈2t, 2t2, 1〉√
4t2 + 4t4 + 1

=
〈2t, 2t2, 1〉√
(2t2 + 1)2

=
〈2t, 2t2, 1〉

2t2 + 1

Therefore, the unit tangent vector at the given point is T(1) = 〈 23 ,
2
3 ,

1
3 〉

Next, we seek the principle unit normal vector N(1), which indicates the direc-
tion in which r(t) is turning at t = 1, which we find as follows:

N(t) =
T′(t)

|T′(t)|

where

T′(t) =
〈(2t2 + 1)(2)− (2t)(4t), (2t2 + 1)(4t)− (2t2)(4t), (2t2 + 1)(0)− (1)(4t)〉

(2t2 + 1)2

=
〈2− 4t2, 4t,−4t〉

(2t2 + 1)2
=

2

(2t2 + 1)2
〈1− 2t2, 2t,−2t〉
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|T′(t)| = 2

(2t2 + 1)2

√
(1− 2t2)2 + (2t)2 + (−2t)2

=
2

(2t2 + 1)2

√
1− 4t2 + 4t4 + 4t2 + 4t2

=
2

(2t2 + 1)2

√
4t4 + 4t2 + 1

=
2

(2t2 + 1)2

√
(2t2 + 1)2

=
2

(2t2 + 1)2
(2t2 + 1)

=
2

2t2 + 1

Therefore,

N(t) =
2〈1− 2t2, 2t,−2t〉

(2t2 + 1)2
· 2t2 + 1

2

=
〈1− 2t2, 2t,−2t〉

2t2 + 1

Then we have N(1) = 〈−1,2,−2〉
3 =

〈−1
3 ,

2
3 ,
−2
3

〉
.

Next, we seek the binormal vector B(1), the vector perpendicular to both the
unit tangent and unit normal vector at t = 1, i.e. the cross product:

B(1) = T(1)×N(1) =

∣∣∣∣∣∣
i j k
2
3

2
3

1
3−1

3
2
3

−2
3

∣∣∣∣∣∣
= i

(
−4

9
− 2

9

)
− j

(
−4

9
+

1

9

)
+ k

(
4

9
+

2

9

)
=

〈
−2

3
,

1

3
,

2

3

〉

Next, we find the curvature κ(1), which measures how quickly the curve r(t) is
changing direction at t = 1, which we calculate as follows:

κ(t) =
|T′(t)|
|r′(t)|

=
2

2t2+1

|〈2t, 2t2, 1〉|

κ(1) =
2
3

|〈2, 2, 1〉|

=
2

3
· 1√

4 + 4 + 1
=

2

9
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Finally, we find the arc length of the curve from t = 0 to t = 1, which is just
the length of the curve between these t values, which we find as follows:

L =

∫ 1

0

|r′(t)|dt =

∫ 1

0

(2t2 + 1)dt =
2

3
t3 + t

∣∣∣1
0

=
2

3
+ 1− 0− 0 =

5

3
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